Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Microbiol Spectr ; 11(3): e0373122, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2314896

ABSTRACT

Rapid diagnostic tests (RDTs) that detect antigen indicative of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can help in making quick health care decisions and regularly monitoring groups at risk of infection. With many RDT products entering the market, it is important to rapidly evaluate their relative performance. Comparison of clinical evaluation study results is challenged by protocol design variations and study populations. Laboratory assays were developed to quantify nucleocapsid (N) and spike (S) SARS-CoV-2 antigens. Quantification of the two antigens in nasal eluates confirmed higher abundance of N than S antigen. The median concentration of N antigen was 10 times greater than S per genome equivalent. The N antigen assay was used in combination with quantitative reverse transcription (RT)-PCR to qualify a panel composed of recombinant antigens, inactivated virus, and clinical specimen pools. This benchmarking panel was applied to evaluate the analytical performance of the SD Biosensor Standard Q COVID-19 antigen (Ag) test, Abbott Panbio COVID-19 Ag rapid test, Abbott BinaxNOW COVID-19 Ag test, and the LumiraDx SARS-CoV-2 Ag test. The four tests displayed different sensitivities toward the different panel members, but all performed best with the clinical specimen pool. The concentration for a 90% probability of detection across the four tests ranged from 21 to 102 pg/mL of N antigen in the extracted sample. Benchmarking panels provide a quick way to verify the baseline performance of a diagnostic and enable direct comparisons between diagnostic tests. IMPORTANCE This study reports the results for severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) nucleocapsid (N) and spike (S) antigen quantification assays and their performance against clinical reverse transcription (RT)-PCR results, thus describing an open-access quantification method for two important SARS-CoV-2 protein analytes. Characterized N antigen panels were used to evaluate the limits of detection of four different rapid tests for SARS-CoV-2 against multiple sources of nucleocapsid antigen, demonstrating proof-of-concept materials and methodology to evaluate SARS-CoV-2 rapid antigen detection tests. Quantification of N antigen was used to characterize the relationship between viral count and antigen concentration among clinical samples and panel members of both clinical sample and viral culture origin. This contributes to a deeper understanding of protein antigen and molecular analytes and presents analytical methods complementary to clinical evaluation for characterizing the performance of both laboratory-based and point-of-care rapid diagnostics for SARS-CoV-2.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Indicators and Reagents , Benchmarking , Diagnostic Tests, Routine , COVID-19 Testing
2.
Journal of Clinical and Translational Science ; 7(s1):134, 2023.
Article in English | ProQuest Central | ID: covidwho-2293580

ABSTRACT

OBJECTIVES/GOALS: Current COVID-19 rapid molecular tests require cartridge-reader detection, expensive circuitry, and complex microfluidics making the most accurate tests unavailable to the masses. Here we present a rapid molecular diagnostic leveraging isothermal amplification and paper-based microfluidics for a low-cost ultra-sensitive COVID-19 assay. METHODS/STUDY POPULATION: We designed a reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of SARS-CoV-2 and bacteriophage MS2 RNA. RT-RPA is a sequence specific, ultrasensitive, rapid isothermal DNA amplification technique that is well suited to home based testing due to its rapid assay time, robustness, ease of use, and readout options. RT-RPA reagents are added to a tube and incubated at 39°C in a fluorometer. Realtime fluorometer data gives results in under 15 minutes. This assay also provides visual detection via lateral flow readout with results in 23 minutes. RESULTS/ANTICIPATED RESULTS: We have developed a rapid multiplexed nucleic acid amplification assay with an internal process control for SARS-CoV-2 using single-pot RT-RPA. We screened 21 primer combinations to select primers that demonstrated excellent performance and target specificity against common respiratory viruses. We demonstrate the ability to multiplex SARS-CoV-2 and MS2 detection, utilizing MS2 as an internal process control for lysis, reverse transcription, amplification, and readout. We show duplexed detection using both fluorescence readout and visual readout using lateral flow strips. Duplexed fluorescence detection shows a limit of detection of 25 copies per reaction. Duplexed lateral flow readout shows a limit of detection of 50 copies per reaction DISCUSSION/SIGNIFICANCE: We developed a duplexed RT-RPA assay for SARS-CoV-2 with fluorescence or lateral flow readout. Our assay does not re-quire expensive reader, circuity, or fluid handling. The low material cost, temperature, and robustness make it ideal for a more accurate home-based COVID-19 diagnostic.

3.
ACS Omega ; 6(31): 20139-20148, 2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1349635

ABSTRACT

Severe acute respiratory coronavirus-2 (SARS-CoV-2) is a novel viral pathogen and therefore a challenge to accurately diagnose infection. Asymptomatic cases are common and so it is difficult to accurately identify infected cases to support surveillance and case detection. Diagnostic test developers are working to meet the global demand for accurate and rapid diagnostic tests to support disease management. However, the focus of many of these has been on molecular diagnostic tests, and more recently serologic tests, for use in primarily high-income countries. Low- and middle-income countries typically have very limited access to molecular diagnostic testing due to fewer resources. Serologic testing is an inappropriate surrogate as the early stages of infection are not detected and misdiagnosis will promote continued transmission. Detection of infection via direct antigen testing may allow for earlier diagnosis provided such a method is sensitive. Leading SARS-CoV-2 biomarkers include spike protein, nucleocapsid protein, envelope protein, and membrane protein. This research focuses on antibodies to SARS-CoV-2 spike protein due to the number of monoclonal antibodies that have been developed for therapeutic research but also have potential diagnostic value. In this study, we assessed the performance of antibodies to the spike glycoprotein, acquired from both commercial and private groups in multiplexed liquid immunoassays, with concurrent testing via a half-strip lateral flow assays (LFA) to indicate antibodies with potential in LFA development. These processes allow for the selection of pairs of high-affinity antispike antibodies that are suitable for liquid immunoassays and LFA, some of which with sensitivity into the low picogram range with the liquid immunoassay formats with no cross-reactivity to other coronavirus S antigens. Discrepancies in optimal ranking were observed with the top pairs used in the liquid and LFA formats. These findings can support the development of SARS-CoV-2 LFAs and diagnostic tools.

SELECTION OF CITATIONS
SEARCH DETAIL